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MILLER, GRADY. Some Results on Symmetric Stable Distributions and
3 Processes. (Under the direction of STAMATIS CAMBANIS.)

This work investigates properties of symmetric stable distribu- ]
tions and stochastic processes. A necessary and sufficient condition ]
is presented for a regression involving symmetric stable random .
variables to be linear. We introduce the notion of n-fold dependence
for symmetric stable random variables and under this condition char-
acterize all monomials in such random variables for which moments exist.
A function space approach to symmetric stable stochastic processes is
~{ developed and applied to the problem of system identification. Neces-
sary and sufficient conditions are given for the existence of measurable

modifications of such processes and for the almost sure integrability

and absolute continuity of sample paths.
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INTRODUCTION AND SUMMARY

It is well known that the stable laws arise naturally as the limiting
distributions of normed sums of independent identically distributed
random variables (or vectors), and this result has been extended to
Banach space valued random variables ([Kumar and Mandrekar 1972]) as
well as to random variables with values in certain topological vector
spaces ([Rajput 1975]). The limiting distributions that have infinite
variance can be typed by a parameter a, 0 < o < 2, and only absolute
moments of order strictly less than a are finite, whereas in the finite
variance case (o = 2) the limiting distribution is always normal and
all moments exist. Even though stable laws on the real line are abso-
lutely continuous, closed form expressions for their density functions
are known in only a few cases. In contrast, the characteristic functions
of stable measures on finite or infinite-dimensional spaces are quite
simple ([Kuelbs 1973]) and therefore constitute a primary tool in our
research.

Many easily formulated problems involving stable distributions on
Euclidean n-space remain unsolved, and the study of multivariate stable
distributions is continually being renewed (as in [Hosoya 1976]). Since
the normal distributions have been extensively investigated, our efforts
are directed mainly toward stable distributions that have 0 < a < 2 and
(for simplicity) that are symmetric. If the symmetric stable random

variables are defined on a probability space (Q,F,P), then they belong
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to the complete metric space Lp(Q,F,P) where 0 < p < a < 2 in the infinite

variance case and to the Hilbert space LZ(Q,F,P) in the normal case. Our
basic approach is to extend results known for normal distributions to
symmetric stable distributions, and many of the difficulties which arise
are due to the more complicated structure of Lp spaces and (for p = 1) the
lack of a simple representation for the dual elements such as exists for
an inner product space. Consequently our development often originates
with p-th order random variables and then is narrowed to include only
symmetric stable random variables. One of the most notable advantages

of specializing to the stable case is that here the notion of independence

provides a satisfactory and useful analogy to the concept of orthogonality

for random variables with finite second moments.

Summary

The first chapter begins with basic definitions and characterizations
on infinite-dimensional spaces, but deals mostly with problems in an n-
dimensional Euclidean space setting. The principal results give necessary
and sufficient conditions for independence of random vectors, linear re-
gression, and finite absolute moments of monomials.

In the second chapter we study the structure of the linear space of
a symmetric stable process (a > 1) and use this structure to represent
elements in the linear space (under certain conditions) as stochastic
integrals of elements of a function space Aa (or Aa). Conditions for

independence, best linear approximations, and expressions for dual elements ‘

are obtained in terms of these representations. These results are
applied to the problem of linear system identification when the input is

a symmetric stable process.
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The final chapter contains necessary and sufficient conditions

for the measurability of p-th order or symmetric stable processes and
for the integrability or absolute continuity of sample paths of symmetric

stable processes, as well as sufficient conditions for absolute continuity

of sample paths of p-th order processes.




I. INDEPENDENCE, REGRESSION, AND MOMENTS

Multivariate stable distributions and their characteristic functions
have been known and studied for many years, but the subject continues
to attract the attention of researchers (e.g., |Press 1972, Paulauskas
1976]). Still unanswered are some quite natural questions surrounding
such topics as the properties of conditional distributions or the effects
of nonlinear transformations on stable distributions. In the first two
sections of this chapter we discuss definitions and results that will
be of use to us later, and in the latter two we present some develop-
ments on regression analysis and moments for jointly symmetric stable

random variables.

1. Fundamental definitions and characterizations.

In this section we define a stable measure on a Banach space and
state some characterizations of the characteristic function (c.f.) of
a symmetric stable measure on a Hilbert space. This material is well-
known for stable measures on n-dimensional Euclidean space Rn, but has
only recently been extended to infinite-dimensional spaces. Even though
we shall rarely consider stable measures on spaces other than Rn, the
additional generality provided here will occasionally be needed.

Let E be a real separable Banach space and for every aeR define
the continuous map Ta: E - E by Ta(x) = ax. A probability measure u
on the Borel subsets of E is said to be stable if for any a > 0 and

b > 0 there exists ¢ > 0 and x ¢ E such that




a1 e GIh = a1 e s

where Sy is the Borel probability measure satisfying éx({x}) = 1 and

e denotes the convolution operation.

Let E* be the dual space of E and C be the space of complex numbers.

The c.f. of a Borel probability measure u on E is a map u: E* > C de-
fined by
am)=£&““wm)

for all weE*. It has been shown ([Itd and Nisio 1968]) that a Borel
probability measure on a real separable Banach space is uniquely deter-
mined by its c.f. The following characterization of a stable measure

is given by [Kumar and Mandrekar 1972] and |Rajput 1975].

1.1.1 A Borel probability measure u on a real separable Banach space
E is stable if and only if for every integer n 2 1 there exists xneE
such that y o Pt iw(xn)

W] = u@m” "we

for every weE¥*, where o is uniquely determined by w and satisfies

< o= 2.

It is customary to say that the measure p is a-stable whenever the
condition in 1.1.1 holds. A measure u on E is said to be symmetric if
u(B) = u(-B) for every Borel set B. For a symmetric a-stable (SaS)
measure u we have Xp = 0 in 1.1.1 for all n. It is straightforward

to check that y is a SaS measure on E if and only if oW 45 @ SaS

measure on R for every weE¥.
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Let us restrict attention to SaS measures on a real separable Hilbert
space H with inner product <',-> and unit sphere S = {XeH:<x,x> = 1}.

Then the SaS c.f. is characterized in [Kuelbs 1973, Corollary 2.1].

1.1.2 A map ¢: H > R is the e.f. of an SaS measure on H Zf and only

if it ean be written in the form l

8(y) = expl- [ [(x,y)]°r(d)} f
S -

for every yeH, where T is a finite symmetric Borel measure on S.

IfH=R"and 0 < a < 2, then the symmetric measure I on S is uniquely
determined by the SaS measure ([Kanter 1973, Lemma 1]), and we shall call
I' the spectral measure of the SaS distribution (or c.f.) as is done in
[Paulauskas 1976, p. 357]. If a = 2, then ¢ is the c.f. of a Gaussian
measure (or distribution). Whenever the distribution of a random vector
(gl,...,gn) is an SoS measure on Rn, we shall refer to 51,...,£n as
jointly SaS random variables.

We now present another characterization (also due to Kuelbs) of the
SaS c.f. on H after introducing some additional terminology. Let t be
the topology induced on H by the seminorms of the form <Ty,y>1/2, where
T is a symmetric, positive, trace class operator on H. An even, real-

valued function f on H satisfying f(0) = 0 is said to be of negative type

if
n
=Y JC:Cy S U
i,§=1f(y1 Fdex
for all n, all yl,...,yneH, and all real numbers SEEEREIS such that
X?=1Cj = 0. If f* is of negative type and if f(0y) = |A|f(y) for all




real A ‘and yeH, then f is called a homogeneous negative-definite function

of order u.

1.1.3 [Kuelbs 1973, Theorem 3.1] A map ¢: H > R 25 the e¢.f. of a SaS

measure on H if and only <f 7t has the form

o(y) = exp{-f*(M1} ,

where f is a homogeneous negative-definite function of order o which is

t-continuous on H.

A stochastic process & = {gt,teT} is called SaS if its finite-
dimensional distributions are SaS. When o = 2, £ is a zero mean Gaussian
process and its statistical properties can be expressed in terms of a
single function, the covariance function. However, when 0 < o < 2, there
is in general no simple parametric description of the finite-dimensional
distributions of the process.

A special class of SaS stochastic processes which are closely related
to Gaussian processes and which have an equally simple parametric descrip-
tion are the so-called sub-Gaussian processes. Nevertheless the sub-
Gaussian processes have quite different properties from the a = 2 case,
some of which are mentioned in [Bretagnolle, et al. 1966, p. 251].

To introduce the sub-Gaussian process we begin with a zero mean
Gaussian process {gt, teT} with finite-dimensional c.f.'s of the form

given in result 1.1.3: for every n and every (tl,...,tn)eTn,

= %
ok (rl,...,rn) = exp{-ft

(r ""’r )}’
) . & ""’tn i n

1

is a homogeneous negative-definite function of order 2.
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It is well known that if a function ¢ is of negative type, then wp
is of negative type for all p such that 0 < p < 1. (See[Parthasarathy
and Schmidt 1972] for a general discussion.) Thus it follows from

.23 that

exp{-f{ ,...,tn(rl”"’rn)}

1l
is an SaS c.f. on R for any a such that 0 < o < 2. The family of all
such SaS c.f.'s, for n = 1,2,... and (tl,...,tn)eTn, clearly specifies a
consistent family of finite-dimensional distributions and hence a stoch-
astic process. We shall use the term a-sub-Gaussian to refer to finite-
dimensional distributions having c.f.'s of this form as well as to such
SaS stochastic processes.

Note that the distribution of an a-sub-Gaussian vector is determined
by « and a positive-definite matrix . and that the distribution of an
a-sub-Gaussian process is determined by o and a positive-definite function
R(s,t). Hence sub-Gaussian distributions have a particularly simple para-
metric description, unlike the general SoS distribution. However, it is
not known how the spectral measure of a sub-Gaussian vector is expressed
in terms of o and £.

While stable measures on a separable Banach space suffice for our
purposes, we may mention that [Dudley and Kanter 1974) and [DeAcosta
1975] treat stable measures on more general ''measurable vector spaces,'
and [Rajput 1975] defines certain stable measures on topclogical vector

spaces.




2. Independence .

The question of how to characterize the independence of jointly SaS

random variables is a natural one and has been answered in [Schilder

1970, Theorem 5.1] and in [Paulauskas 1976, Proposition 4]. Although
these results by Schilder and Paulauskas are stated correcti,, the proofs
as they appear are not convincing and a more detailed treatment seems
justified. The implications of independence are important for us in

the following chapter when we consider SaS processes having independent
increments; so in this section we prove a characterization of independence
for jointly SaS random variables or vectors in terms of the support of

their spectral measure.

1.2.1 THEOREM. Let 51,. e ’En be jointly SaS random variables with
0 < a < 2 and spectral measure T. For fixed k and m satisfying a
l1<k<mzc<n, Ex and gy are independent i1f and only if P({(Xl,...,xn)cS:
XX # 0}) = 0.

This result is essentially due to Schilder, but its proof here is *
based on Lemma 1.2.2 which we state and prove first. The technique used

in the lemma was motivated by the proof of Lemma 1 in [Kanter 1973].

Define the o-finite measure p on (0,=) by p(ds) = -%%a-, define
S
8: (0,0) x R® g by 6(s,x) = sx, and define T: L by T(xl,...,xn)

= (yl,...,yn) where Yk = X Yo ® X and e 0 if i # k and 1 # m.

Let v=1T ! and G = (va)e_l. Choose four real numbers hy, h ., hy,
h' such that i

f(v) = j=E’m(z-cos hjvj - cos hjvj) >0 |




1
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whenever Vi # 0 or v # 0.

1.2.2 LEMMA. The function y: R® > R defined by
y(r) = é |7y rmxmlartdx)

uniquely determines the measure f(v)G(dv) on R .

Proof: Notice that

w(®) = [ |¢r,Txy|%r(dx) = r,x}| v (dx)
. [(r,Tx) | R,{ | (x:x)

for all r<R™ and that for all z<R

o oo

[z|* [ (1-cos s)p(ds) = [ (1-cos zs)p(ds) .
0

0
Thus = -
v(r) [ (1-cos s)p(ds) = [ [ |<r,x>]°(1-cos s)p (ds)v(dx)
0 no
R
= [ _(1-cos{r,sx)) (pxv) (dsxdx) = [ _(1-cos({r,v))G(dv)
. LT In (55%)
for every rcRn. Let Bk = (...0...,hk,...0...) and Gm = (...0...,hm,...

0...), where the coordinates hk and hm are in the k-th and m-th posi-

tions, respectively. Then for every reR" the function ¥ determines
1
¥ ) én[(l-cos<r+6j,v>) + (1-cos<r-6j,v>) - 2(1 cos(r,v))]G(dV)
- ﬁn cos(T,v) Y (1-cos hjvj)c(dv)

i(r,v) Z

j=k,m

=f e

(1-cos h.v.)G(dv) ,
R 3

since G is a symmetric measure. Thus y determines the value of
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ifr,v
In < %(V)G(dv) for every reR". Since f(v)G(dv) is a finite measure

R
on R?, the result follows from the uniqueness of the Fourier transform. [J

Proof of Theorem 1.2.1: If Ex and g, are independent, then their joint

c.f. factors. Thus for every real T and r
“rk ATl = [ [ é]xklar(dx) + ) |° £|xm]°‘r(dx) :

Consider the measure FO on S placing mass %—f|xk|ar(dx) on. (e «0es
1,...0...) and on (...0...,-1,...0...), where the 1 and -1 are the k-th
coordinates; placing mass %—flxmlar(dx) OF o o st ¢ iyt aDl s o), anil OB
(...0...,-1,...0...), where the 1 and -1 are the m-th coordinates; and

placing mass zero on the remainder of S. Then clearly
a ” a
*) é]rkxk+rmxm| r(dx) = é]rkxk+rmxm| Ip(dx)

for all 1, 1. Let v, = POT-l and G, = (vao)e_l. Define

= {veR™: ViV # 0} and observe that

[ xaWE(WV)G(AV) = [ [ xn(sx)£(sx) (oxv,) (dsxdx)
B 0 B 0
R0 0 pn

[}
O
8

(x) f(sx)v,(dx)p(ds) = 0 ,
f X{xkxm;‘O} 0

Rn

since vO({XeRn X X #0}) = FO({XeS X Xn # 0}) = 0. By (*) and Lemma
1.2.2, f(v)G(dv) and f(v)Go(dv) must agree on B. Hence

0= [ xg(WME£(V)G(dV)
Rn

= X (x)f(sx)v(dx)p(ds) ,
é £n {xkxm#O}
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so that [ X 209y ) £(sX)v(dx) = 0 for some s) > 0. Because
n K'm
R

f(sox) > 0 on {xkxm#O}, we get that

0==v({XeRn: xkxm#O}) = T'({xeS: xkxm#O}) :

Conversely, T'({xeS: xkxm#O}) = 0 implies that

[lr,x, + r x_|%T(dx) O+ [ + [ + [)rex+rx |%T(dx)
s Kk ‘mm x A0 X0 x=0 ﬁm’kk n] ,

xm=0 xm#O xm=0 xm#O

1 | 1% 10T+ (| %1% (T () |
S S
Thus Ex and £, are independent since their joint c.f. factors. 0

1.2.3 COROLLARY. A subset {Ek ,...,Ek } of {51,...,gn} 1s independent
! 31
if and only if the random variables are pairwise independent.
Proof: Necessity is clear. For the sufficiency, I' is concentrated on
the set {xk X = 0, p#q in 1,2,...,i} and therefore we have
q

P

Ji% X #ioott |°T (dx)
s Kk k; 'k

- . r, X, +...+1r, X |%T(dx)
{x .{. - & j.- ]kakl kg

(=

Fir, = [PFUaye. & Tt s P rid) .
s KK 5 ki kg

1.2.4 COROLLARY. Let {kl,...,ki} and {ml,...,mj} be disjoint subsets

of {1,...,n}. Then the random vectors (gk ,...,gk ) and (gm ,...,gm )
1 i 1 j
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are independent if and only if any two random variables, one selected

from each vector, are independent.

Proof: Necessity is clear. For the sufficiency, observe that

Tl ®, #c.a%, 6 1 X %, 0T % |1 (dx)
k1 k1 ki ki m; my mi mj
H / / / / Meee]%r (@)
o PR #0 (x% +, . +x° #0 (x2 &, 4x2 =0} {x° +...4x° =0
k1 ki k1 e k1 ki k1 ki
and and 1 and and
x; a2 #0 lxé *oodx =0 xZ .. #0 xi + +xi_=0 J
1 J J 1 J
= [|r +...4T 1T (dx) + [, &% 88 % 1% (dx)
S klxk1 kixki g mmy "ﬁ mj
: 2 2 2 2 o :
since I‘{xk *oatxp #0and x_ +...+x_ # 0} = 0 by Theorem 1.2.1. 0 .
1 i oy i !

1.2.5 Example. If al,gz, and g3 are jointly SaS random variables with
0 < a < 2 and spectral measure I, then (gl,gz) and £3 are independent if “

and only if T' is concentrated on

{x1x3=0} U {xzx3=0} = {x3=0} u {x1=0 and x2=0}
2
= 03+ x3=1} U {xgeel) :

Ay
x
|

s
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1.2.6 Example. It is easy to check from their c.f. that two non-
degenerate jointly sub-Gaussian random variables (0 < o < 2) cannot

be independent. Indeed, consider the bivariate normal c.f.

=1 2 22
exp{-2 1 * 20,17, + 05r)}

(czr
1 12515 2

where c% > 0 and og > 0 are the marginal variances and 997 is the co-

variance. Then

.2 *
2 2

e 2.2 2373
¢o(r 1)) = exp{-2 (07T] * 20,117, *+ 0575) 7]

is the joint c.f. of two nondegenerate sub-Gaussian random variables

that are independent if and only if
o

202 2252 o
™ (asE, + 20 o,r,)" = ollrll + 02|r2|

11 125172 *

for all T, The left-hand side of (*) is never zero when T, #0;

so we hold r, # 0 and differentiate both sides with respect to ) to get

2
Gty ¥ Gt
1 12 2 = 0%(r1)a 1

2-a
)

2
(o717

2 2.2
171 * 207,77, * 0513)

whenever r, # 0, which becomes

2 o-1 o (o Ao a a 2 a-1
0705T1(1)7 "+ 0g0p,lr,l™ = ajog, I |7+ 0joh(r)Y T,
after substituting (*) and simplifying. Taking By~ 0 and r, = i

we see that 012 = 0; so we now have

2 .o =
010,71 (1)

whenever T, # 0, which implies that 0,0, = 0, a contradiction. (Note:

when raising a number u to a power p we shall use the convention
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WP = ul? sign(u) .)

3. Regression.

In this section we obtain a necessary and sufficient condition,
expressed in terms of their spectral measure, for a regression involving
SaS random variables to be linear (Theorem 1.3.7). This is a consequence
of a result relating the form of the linear regression function to par-
tial derivatives of the joint c.f; (Theorem 1.3.1). We also obtain
a sufficient condition for linear regression (Proposition 1.3.8) which
is simpler than the necessary and sufficient condition in Theorem 1.3.7,
but nevertheless has some interesting applications.

Let 50’51""’€n be jointly SaS random variables with 1 < a < 2.

For an SaS distribution on R it is well-known that the moments of order

)

p < o exist, and it is therefore meaningful to consider E(Eolil,...,gn
and to study the form of f for which

E(EOIEI"..’gn) = f(£1)'°"£n) a.s.

Kanter has obtained several results which show that f is a linear
function in certain cases. The regression E(golél) is always linear
(Corollary 1.3.4),as is the regression E(golgl,...,gn) provided SERERRIN
are independent (Corollary 1.3.6) ([Kanter 1972a]). In case
E(golgl,...,gn) and 51,...,£n are jointly SaS (a condition for which
criteria are not known), then once again the regression is linear

([Kanter 1972b]).

For our investigations we shal! use a general result giving a neces-

sary and sufficient condition for linear regression in terms of the joint
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TR

|
|

16

c.f. of the random variables (not necessarily stable). The method of
proof comes from a related result found in [Lukacs and Laha 1964,

Theorem 6.1.1].

1.3.1 THEOREM. Let &.,E.,...:& be random variables having first
0221 n

moments and with joint c.f. ¢. Then

(*) E(goigl,...,gn) = algl+...+angn a.s.
if and only if

bl ¢(rgsTyse oot )]

oT)) (R r0=0

d

> 9
= 31'3—1':; ¢(0,r1;°- . ,rn)+' . '+an 'a'l: ¢(09r1" 0 C ’rn)

for all LSERERRL

Proof: Observe first that the condition may be written as

LT gt )
E[Eoe 1=l n’n ]
e

= alE[gle ]+...+anE[€ne

for all r T

17Ty
Necessity. (*) implies

i(r1£1+...+rn£n)

E(golgl,...,gn)e = (alil+...+an£n)e

and (**) follows by taking expectations.

Sufficiency. Let E(go—algl-...-angnlgl,...,gn) = £(E. .08

where f is a Borel-measurable function on R". Then for all TiseeesTy

i(r1£1+...+rn£n) i(r1£1+...+rn&n)

i(r1£1+...+rn£n)

it
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we have that

(P& G Ex)
171 il
£ £Dt 522 J0 ket SRR K ST
R
(e Byt et E)
B ki e T
1P, & ¥ oo £ )
= E[(go_algl-"'-angn)e t an J B0

by (**). Now

v(B) = £ f(xl,...,xn)dp(gl,...,gn)‘l(xl,...,xn)

defines a finite signed measure (f.s.m.) on R™ which is therefore unique-

ly determined by its Fourier transform. Thus

b G iR
(Bps-eesby) (B)

- £ f(xl,...,xn)dp(gl,...,gn)‘l(xl,...,xn) =0 _

for all Borel subsets B of Rn, and since f(gl,...,gn) is a o(gl,...,gn)-
measurable random variable, we get that f(gl,...,gn) =0 a.s. [P] and

(*) follows. O

If the regression is linear, then it is clear that the coefficients
ap5...,a, are uniquely determined by ¢ if and only if &1,...,£n are
linearly independent elements of LI(Q,F,P). For each choice of reR"

the condition of Theorem 1.3.1 provides a linear equation involving the

A:i ot

aj’s, but it is not clear in general what n choices of reR™ will provide

n linearly independent equations which can be solved for the aj’s.




R

1.3.2 Example. If 50’51""’£n are jointly a-sub-Gaussian random var-

jables, then the regression is linear and the coefficients are the same

as in the Gaussian case. For, let

a )
3 g 2
¢(ro,...,rn) = expf-Z ll % 0013r1r3]~} :

where I = (cij) is a covariance matrix. Then for LSEERRRE N not all

zero,
- &
i 2
3¢(r0,r1,...,rn) . aZ “p(0,ry,...,T )ZJ 1003 ’ 4
or, £ 2-a
0 rO-O (E ) - #
i,j= =1° ij 5 J :
and for 1 <k <n 1
iy o
2
30(0,Ty5--,1) a2 “9(0,rq,.. T )Z -193K%

ark 2-a
n 2
(Zi,j=lcijrirj)

Therefore the condition of Theorem 1.3.1 is written as

n n
ZCOJJ= E""k ZOJkJ

or

n
(005 = Lol =

nes-1

i=1

for all TseeesT and thus it is satisfied by the ak’s which are the

n’

solutions of the system of equations

n
kzlcjkak = 0gjs J = ; (AU, A
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Hence the regression is linear and the regression coefficients satisfy
. T T
the same equations fa = o,, a = (al,...,an), 9 = (001""’00n)’ as

when &0,51,...,£n are jointly Gaussian with mean zero and covariance

matrix I.

1.3.3 COROLLARY. If go,gl,...,gn are jointly SaS with spectral measure

n+1

I' on the unit sphere S in R ~, then

E(Eolgla"',gn) = 31€1+...+an£n aA.S.

if and only i1f

a-1 &
é(xo-alxl-...-anxn)(r1x1+...+rnxn) T{dx) = 0

for all TiseesTp .

Before illustrating the use of Corollary 1.3.3, we define the

covariation CnC of n with ¢ as

2 a-1
Sz éxl(xz) Iﬂr\,c(dx) y

where n and ¢ are jointly SaS with spectral measure T (Note the

n,z'
lack of symmetry in n and ¢ here.) The next result provides Cn; with

an interesting interpretation.

1.3.4 COROLLARY. [Kanter 1972a, Theorem 1.4]. If n and T are jointly
SaS random variables, then

Cn(
E(nlzg) = C—’- E Q.8
GG

Proof: By Corollary 1.3.3, E(n|z) = az a.s. if and only if

SSIETSRTI.

. ‘ - . , : : , "'I
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a-1 o
é (x;-ax,) (rx,) rn’c(dx) =0

for all reR. Solving for a yields

|
3
Y

El

For jointly Gaussian random variables n and ¢ with zero mean (the
case a = 2) it is well-known that a result analogous to Corollary 1.3.4
holds with CnC replaced by the covariance of n and ¢.

By appropriate choice of I' it is easy to see from Corollary 1.3.3
that the regression can be nonlinear. For example, take n = 2 and

suppose that

r3V2,37Y2 3712y | 10,1,0) = 10,0,1) = 1

and that T' places zero mass on the remainder of S. (Note that I need 3
not be symmetric unless we are concerned about uniqueness.) Then
E(go[gl,gz) is not a linear function of El and gz; however, even in this

simple case we do not know the form of the regression.

L35 CORODLARY. If 50,51,52 are jointly SaS and if

o)

ELE5]8q585) = 8.5, + 8,8, @by,
itk (e 351 o

then a; and a, satisfy
T m

*)

C

12 7 " " S0

gy |
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where Cij 18 the covariation of £i with €j. Moreover, equations (*)
uniquely determine a; and a, tf and only if 51 and Ez are linearly

independent elements of LI(Q)'

Proof: If the regression is linear, then equations (*) follow immediately
from the condition of Corollary 1.3.3 by taking ry = 1, ¥, = 0 and

ry = a5 r, = 1. These equations have a unique solution unless

S19%22 T S13 7 ¢

! |x1|aF(dx)£ 1%, 1% (dx) = ! xl(xz)a-lr(dx)é S e (4

which implies that Xy = A, a.e. IT] for some AeR by Holder's inequality,

hence gl = Agz 8 0

If n > 2 and the regression is linear, then the regression coeffi-
cients aj again satisfy linear equations given by the condition in
Corollary 1.3.3. Unfortunately, just as in the non-stable case (Theorem
1.3.1), we do not know in general how to choose n linearly independent
equations that can be solved for the aj’s.

The following corollary shows that the regression is always linear
and the regression coefficients are easily obtained whenever El,...,g

n

are independent.

1.3.6 COrROLLARY. [Kanter 1972a, Theorem 3.4]. If go,gl,...,gn
are jointly SaS random variables and if gl,...,gn are independent and

nondegenerate, then

E(€0|€1""’£n) = 31€1+...+an£n HeBey




e

- a—a et
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and the coefficients a, are given by

 Cox
ak = l«“‘ ’
Kk

: S " " : s
where COk 18 the covariation o] EO with Ek and Ckkzs the covariation

of &, with itself.
The proof follows easily from Corollaries 1.2.3 and 1.3.3.

We now obtain a condition for linear regression by applying to
Corollary 1.3.3 the methods used in Lemma 1.2.2. Although the resulting
condition appears surprisingly involved, it is not clear that further
simplification is possible.

n+l & Rn+1

Define T: R by T(yo,yl,...,yn) = (O,yl,...,yn), define

6: (0,°) x S ~» Rn+1 by 6(s,x) = sx, and define the o-finite measure p

on (0,) by p(ds) = ds/s*. Let f(x) = Xp T apXqTeeetaxo, and define

n
a f.s.m. v on'S by v(dx) = f(x)r(dx). Let G be the measure on Rn+l

defined by G = (pxv)8 1, and let G be the o-field of subsets

{RxB: B is a Borel subset of R" =105 e 5100

of Rx[R" -(0,...,0)].

1.3.7 THEOREM. Let 50,51,...,£n be jointly SaS variables, 1 < a < 2,
with corresponding measure T on S. Then E(€0|€1,...,£n) = a1§1+...+a I3

a.s. 1f and only i1f G is the zero measure on G.

Proof: Assume that E(Eolgl,...,gn) = algl+...+a £_a.s. Then by

Corollary 1.3.3,
f f(x)((r,Tx))a'lr(dx) =0
5

Rn*l

for all re Note that for any z¢R,




1
k
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(z)a-lf sin s p(ds) = [ sin(zs)p(ds)
0 0
Thus
0= [ £0) (<r,Tx>)*Ir(ax) [ sin s o(ds)
S 0
= [ [ sin<r,T(sx)>v(dx)e(ds)
0 S
= [ sin<r,Tv>G(dv)
Rn+1
*) = [ sin<r,v>GT t(dv)
Rn+1

for all reRn+1.
Let hl""’hn be any real numbers, and let 61 = (O,hl,O,...,O),
1

n+
62 = (0,0,hz,O,...,O),..., 6n = (0,...,0,hn). Then for every reR

=1
2

o
|

n -
§ [ [2 sin<r,v> - sin<r#8.,v> - sin<r-4.,v>]GT 1(dv)
j=1 pitl J J

n

n -
/ sin<r,v>_z (1-cos hjvj)GT 1(dv) 3

Rn+1 j=1
' [} : n i ,
We can choose hl"“’hn and hl""’hn such that either Zj=1(1 cos hj\j)
n A ' : n+l,
or ijl(l cos thj) is nonzero for every Ve{(vo,vl,...,vn)e :

2 2 _ th 1
Vitee v, >10} . Let g(v) = Zj=1(2-cos hjvj cos hjvj). Then for

n+
every reR 7,

'] sin<r,v>g(v)GT'1(dv) =0 .

Rn+1

Now it is easy to see that g(v)GT-l(dv) defines a f.s.m. on Rn+1 which is

antisymmetric in the sense that
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fBg(v)cr‘lr.dv) - - 113 g(v)GT L (av)

1

n+1. Thus for every reR™ “

for every Borel subset B of R

f e1<r’V>g(v)GT-1(dv) = 0. It follows by the uniqueness of the Fourier

Rn+1
-1 . n+l =il
transform that g(v)GT ~(dv) is the zero measure on R ~. Hence GT
)
is the zero measure on {(VO,vl,...,vn)eRn+1: vi+...+v§ > 0). 'Thus for

every Borel set B c B - (05 ODRs
G(RxB) = GT L(RxB) = 0 .

Therefore G is the zero measure on G.
For the converse, note that sin<r,Tv> is a G-measurable function on

RX{Rn -~ (0,...,0)] for every reRn+1.

Thus, if G is the zero measure on G,
then

f sin<r,Tv>G(dv) = 0

Rn+1

for every reRn+1. The linearity of the regression now follows from equa-

tion (*) and Corollary 1.3.3.

The condition in Theorem 1.3.7 is too complicated for easy verifica-
tion; so we shall present in the following proposition a simpler sufficient
condition that provides nontrivial examples in which the regression is
linear. To simplify the presentation and to make geometric visualization
possible, we shall treat the case n = 2, 7.e., the regression E(go|gl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>